On the asymptotic behavior of the second moment of the Fourier transform of a random measure

نویسنده

  • Manuel L. Esquível
چکیده

The behavior at infinity of the Fourier transform of the random measures that appear in the theory of multiplicative chaos of Mandelbrot, Peyrière, and Kahane is an area quite unexplored. For context and further reference, we first present an overview of this theory and then the result, which is the main objective of this work, generalizing a result previously announced by Kahane. We establish an estimate for the asymptotic behavior of the second moment of the Fourier transform of the limit randommeasure in the theory ofmultiplicative chaos. After looking at the behavior at infinity of the Fourier transform of some remarkable functions andmeasures, we prove a formula essentially due to Frostman, involving the Riesz kernels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Order Moment Asymptotic Expansions for a Randomly Stopped and Standardized Sum

This paper establishes the first four moment expansions to the order o(a^−1) of S_{t_{a}}^{prime }/sqrt{t_{a}}, where S_{n}^{prime }=sum_{i=1}^{n}Y_{i} is a simple random walk with E(Yi) = 0, and ta is a stopping time given by t_{a}=inf left{ ngeq 1:n+S_{n}+zeta _{n}>aright}‎ where S_{n}=sum_{i=1}^{n}X_{i} is another simple random walk with E(Xi) = 0, and {zeta _{n},ngeq 1} is a sequence of ran...

متن کامل

Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables

Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...

متن کامل

On the Distribution of Discounted Collective Risk Model

We study the distribution of discounted collective risk model where the counting process is Poisson. For the model considered here, we obtain mean, variance and moment generating function (m.g.f) of the model. To do this, we use two approaches. In the first approach we use classical methods to obtain the mean and variance. In the second approach we introduce some proper martingale and then we o...

متن کامل

CVaR Reduced Fuzzy Variables and Their Second Order Moments

Based on credibilistic value-at-risk (CVaR) of regularfuzzy variable, we introduce a new CVaR reduction method fortype-2 fuzzy variables. The reduced fuzzy variables arecharacterized by parametric possibility distributions. We establishsome useful analytical expressions for mean values and secondorder moments of common reduced fuzzy variables. The convex properties of second order moments with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004